Role of subunit interfaces in the allosteric mechanism of hemoglobin.
نویسندگان
چکیده
We calculate the surface area buried in subunit interfaces of human deoxyhemoglobin and of horse methemoglobin. A larger surface area is buried in deoxy- than in methemoglobin as a result of tertiary and quaternary structure changes. In both molecules the dimer-dimer interface is closepacked. This implies that hydrophobicity stabilizes the deoxystructure, the free energy spent in keeping the subunits in a low-affinity conformation being compensated by hydrophobic free energy due to the smaller surface area accessible to solvent.
منابع مشابه
N-terminal contributions of the gamma-subunit of fetal hemoglobin to its tetramer strength: remote effects at subunit contacts.
The greatly increased tetramer strength of liganded fetal hemoglobin compared with adult hemoglobin is shown by its 70-fold smaller tetramer-dimer dissociation constant. This property has been shown previously to be only partially caused by the 5-amino-acid differences at both types of interfaces in each hemoglobin. A major contributor to tetramer strengthening is the 18-amino-acid N-terminal A...
متن کاملA signature of the T ---> R transition in human hemoglobin.
Allosteric effects in hemoglobin arise from the equilibrium between at least two energetic states of the molecule: a tense state, T, and a relaxed state, R. The two states differ from each other in the number and energy of the interactions between hemoglobin subunits. In the T state, constraints between subunits oppose the structural changes resulting from ligand binding. In the R state, these ...
متن کاملNew Sequential Model for Human Hemoglobin: Alpha Subunit as Cooperativity Inducer
Hemoglobin is a tetrameric oxygen transport protein in animal bodies. However, there is a paucity of information regarding differences between alpha and beta subunits of hemoglobin in terms of oxygen affinity. The sequential model of Koshland, Nemthy and Filmer (KNF model) has attributed similar affinities to both alpha and beta subunits. The main purpose of the present study is to construct a ...
متن کاملThe Potential Mechanism of ZFX Involvement in Cell Growth
Background:The zinc-finger X linked (ZFX) gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. ...
متن کاملMechanism of Allosteric Modulation of the Cys-loop Receptors
The cys-loop receptor family is a major family of neurotransmitter-operated ion channels. They play important roles in fast synaptic transmission, controlling neuronal excitability, and brain function. These receptors are allosteric proteins, in that binding of a neurotransmitter to its binding site remotely controls the channel function. The cys-loop receptors also are subject to allosteric mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 73 11 شماره
صفحات -
تاریخ انتشار 1976